¾å Á°
¾å: ²òÅú Á°: ÅìËÌÂçÁ°´üÍý·Ï

̾ÂçÁ°´üÍý·Ï

(1)
am>0 ¤Ç¤¢¤ë¤³¤È¤ò¿ô³ØŪµ¢Ç¼Ë¡¤Ç¼¨¤¹¡¥ ÄêµÁ¤è¤êa1=1>0 ¡¥am-1>0 ¤È¤¹¤ë¡¥ f(x)>0 ¤è¤ê

\begin{displaymath}a_m=\int_0^{a_{m-1}}f(x)\,dx>0
\end{displaymath}

¤æ¤¨¤Ë $m\ge 1$ ¤ËÂФ·¤Æam>0 ¤Ç¤¢¤ë¡¥¤³¤Î¤È¤­ $m\ge 2$ ¤ËÂФ·¤Æ f(x)<1¤Ê¤Î¤Ç

\begin{displaymath}a_m=\int_0^{a_{m-1}}f(x)\,dx<\int_0^{a_{m-1}}1\,dx=a_{m-1}
\end{displaymath}

¤è¤Ã¤Æ $a_1>a_2>\cdots >a_{m-1}>a_m>\cdots$ ¤È¤Ê¤ë¤³¤È¤¬¼¨¤µ¤ì¤¿¡¥
(2)
$\dfrac{1}{2002}>a_m$ ¤È¤Ê¤ë m ¤¬Â¸ºß¤·¤Ê¤¤¤È²¾Äꤹ¤ë¡¥ ¤³¤Î¤È¤­¤Ä¤Í¤Ë $\dfrac{1}{2002}\le a_m$ ¤¬À®¤êΩ¤Ä¡¥¤·¤¿¤¬¤Ã¤Æ

\begin{displaymath}\dfrac{1}{2002}\le \lim_{m \to \infty} a_m
\end{displaymath} ¡Ä­¡

$\maru{2}$ ¤Ï$\maru{1}$ ¤ÈÌ·½â¤¹¤ë¡¥ ¤·¤¿¤¬¤Ã¤Æ $\dfrac{1}{2002}>a_m$ ¤È¤Ê¤ë m ¤¬Â¸ºß¤¹¤ë¤³¤È¤¬¼¨¤µ¤ì¤¿¡¥


AozoraGakuen
2002-06-21