2016年入試問題研究に戻る福岡大解答
(1) $ 0< \dfrac{2}{5},\ \dfrac{3}{5}< 1 $ より, 無限等比級数 $ \displaystyle \sum_{n=1}^{\infty}\dfrac{3^n}{5^n} $ , $ \displaystyle \sum_{n=1}^{\infty}\dfrac{2^n}{5^n} $ は収束する.よって, \begin{eqnarray*} \sum_{n=1}^{\infty}\dfrac{3^n-2^n}{5^n}&=& \sum_{n=1}^{\infty}\dfrac{3^n}{5^n}-\sum_{n=1}^{\infty}\dfrac{2^n}{5^n}\\ &=& \dfrac{3}{5}\cdot\dfrac{1}{1-\dfrac{3}{5}} -\dfrac{2}{5}\cdot\dfrac{1}{1-\dfrac{2}{5}}=\dfrac{3}{2}-\dfrac{2}{3}=\dfrac{5}{6} \end{eqnarray*}
(2)
解法1 \[ S_N=\sum_{n=1}^{N}\left(\dfrac{1}{a}\right)^n\cos\dfrac{n\pi}{2} \] とおく. $ m\geqq 1 $ に対し, $ n=4m-3,\ 4m-2,\ 4m-1,\ 4m $ のとき, $ \cos\dfrac{n\pi}{2} $ の値はそれぞれ $ 0,\ -1,\ 0,\ 1 $ である. よって, \[ S_{4N}=-\sum_{m=1}^{N}\left(\dfrac{1}{a}\right)^{4m-2} +\sum_{m=1}^{N}\left(\dfrac{1}{a}\right)^{4m} = -\dfrac{1}{a^2}\sum_{m=1}^{N}\left(\dfrac{1}{a}\right)^{4(m-1)} +\dfrac{1}{a^4}\sum_{m=1}^{N}\left(\dfrac{1}{a}\right)^{4(m-1)} \] となり, \[ \lim_{N\to \infty}\sum_{n=1}^{4N}\left(\dfrac{1}{a}\right)^n\cos\dfrac{n\pi}{2} =\left(-\dfrac{1}{a^2}+\dfrac{1}{a^4}\right)\dfrac{1}{1-\dfrac{1}{a^4}} =\dfrac{1-a^2}{a^4-1}=-\dfrac{1}{a^2+1} \] \[ S_{4N}=S_{4N+1}=S_{4N+2}-\dfrac{1}{a^{4N+2}} =S_{4N+3}-\dfrac{1}{a^{4N+2}} \] なので, \[ \lim_{N\to\infty}S_{4N}= \lim_{N\to\infty}S_{4N+1}= \lim_{N\to\infty}S_{4N+2}= \lim_{N\to\infty}S_{4N+3} \] である.よって \[ \sum_{n=1}^{\infty}\left(\dfrac{1}{a}\right)^n\cos\dfrac{n\pi}{2} =-\dfrac{1}{a^2+1} \]解法2 \[ S_N=\sum_{n=1}^{N}\left(\dfrac{1}{a}\right)^n\cos\dfrac{n\pi}{2},\ \quad T_N=\sum_{n=1}^{N}\left(\dfrac{1}{a}\right)^n\sin\dfrac{n\pi}{2} \] とおく. \begin{eqnarray*} S_N+iT_N&=&\sum_{n=1}^{N}\left(\dfrac{1}{a}\right)^n\left( \cos\dfrac{n\pi}{2}+i\sin\dfrac{n\pi}{2}\right) =\sum_{n=1}^{N}\left(\dfrac{1}{a}\right)^n\left( \cos\dfrac{\pi}{2}+i\sin\dfrac{\pi}{2}\right)^n\\ &=&\sum_{n=1}^{N}\left(\dfrac{i}{a}\right)^n =\dfrac{i}{a}\cdot\dfrac{1-\left(\dfrac{i}{a}\right)^{N}}{1-\dfrac{i}{a}} \end{eqnarray*} ここで, $ a > 1 $ より \[ \lim_{N\to \infty}\left|\dfrac{i}{a} \right|^N=0 \] なので, \[ \lim_{N\to \infty}(S_N+iT_N)=\dfrac{i}{a}\cdot\dfrac{1}{1-\dfrac{i}{a}}=\dfrac{i}{a-i} =-\dfrac{1}{a^2+1}+\dfrac{a}{a^2+1}i \] よって \[ \lim_{N\to \infty}S_N=-\dfrac{1}{a^2+1} \]