2021年入試問題研究に戻る理系3番解答
$ I_N=\displaystyle \sum_{n=0}^N\left(\dfrac{1}{2} \right)^n\cos\dfrac{n\pi}{6} $ , $ J_N=\displaystyle \sum_{n=0}^N\left(\dfrac{1}{2} \right)^n\sin\dfrac{n\pi}{6} $ とおく. \begin{eqnarray*} I_N+iJ_N &=&\sum_{n=0}^N\left(\dfrac{1}{2} \right)^n\left(\cos\dfrac{\pi}{6}+i\sin\dfrac{\pi}{6}\right)^n\\ &=&\dfrac{1-\left(\dfrac{1}{2}\right)^{N+1}\left(\cos\dfrac{\pi}{6}+i\sin\dfrac{\pi}{6} \right)^{N+1}}{1-\dfrac{1}{2}\left(\cos\dfrac{\pi}{6}+i\sin\dfrac{\pi}{6} \right)} \end{eqnarray*} \[ \lim_{N\to \infty}\left|\left(\dfrac{1}{2}\right)^{N+1}\left(\cos\dfrac{\pi}{6}+i\sin\dfrac{\pi}{6} \right)^{N+1} \right|\leqq \lim_{N\to \infty}\left(\dfrac{1}{2}\right)^{N+1}=0 \] なので, \begin{eqnarray*} \lim_{N\to \infty}\left(I_N+iJ_N \right)&=& \dfrac{1}{1-\dfrac{1}{2}\left(\cos\dfrac{\pi}{6}+i\sin\dfrac{\pi}{6} \right)}\\ &=&\dfrac{}{1-\dfrac{1}{2}\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}i \right)}=\dfrac{4}{4-\sqrt{3}-i}\\ &=&\dfrac{4(4-\sqrt{3}+i)}{(4-\sqrt{3})^2+1}=\dfrac{4-\sqrt{3}+i}{5-2\sqrt{3}}\\ &=&\dfrac{14+3\sqrt{3}+(5+2\sqrt{3})i}{13} \end{eqnarray*} 複素数平面上の点列の収束と考えることにより, \[ \lim_{N\to \infty}\left(I_N+iJ_N \right)= \lim_{N\to \infty}I_N+i\lim_{N\to \infty}J_N \] であるから, \[ \lim_{N\to \infty}I_N=\dfrac{14+3\sqrt{3}}{13} \] である.