南海 正弦定理は余弦定理から導くことができる.
美樹 余弦定理と正弦定理は別々の定理のように習います.
南海 があり, 各頂点の対辺の長さをとする.
正弦定理とは,外接円の半径をとするとき,
ところで三角形の内角なので,はすべて正だから
美樹 平方したものを比べればよい.
これで同様にして
この式の値が外接円の直径であることを示せば,正弦定理が示せます.
南海 3つの角のうちどれかは鋭角だ. が鋭角であるとして,2点 を 固定したまま,点を外接円周上を動かす.
美樹 わかりました.このように点を動かしても, の値は不変です.
ですから,が直径になるときを考えると,