¼¡ ¾å Á° ¼¡: 3. ¾å: 2. ²òÅú Á°: 1.

2.

Ê̲ò2

(1) $\bigtriangle¾å {\rm ABC}$ ¤Î³Æĺ³Ñ¤ò $\alpha,\ \beta,\ \gamma$ ¤ÈÃÖ¤¯¡¥ ¤Þ¤¿ $\bigtriangle¾å {\rm ABC}$ ¤ò $\mathrm{A}(1,\ 0)$ ¤È¤·¤ÆºÂɸʿÌ̾å¤Ë¤ª¤¤¤Æ°ìÈÌÀ­ ¤ò¼º¤ï¤Ê¤¤¡¥ ¤³¤Î¤È¤­±Ô³Ñ»°³Ñ·Á¤Ç¤âÆ߳ѻ°³Ñ·Á¤Ç¤â $\mathrm{B}(\cos 2\gamma,\ \sin 2\gamma)$ , $\mathrm{C}(\cos 2(\gamma+\alpha),\ \sin 2(\gamma+\alpha))$ ¤È¤Ê¤ë¡¥

\begin{eqnarray*}\mathrm{AB}^2+\mathrm{BC}^2+\mathrm{CA}^2&=&
(\cos 2\gamma -1...
...+\alpha)\}\\
&=&8-8\cos(\gamma+\alpha)\cos\gamma \cos\alpha
\end{eqnarray*}

¤æ¤¨¤Ë AB2+BC2+CA2>8 ¤Ï $\cos(\gamma+\alpha)\cos\gamma \cos\alpha<0$¤ò°ÕÌ£¤¹¤ë¡¥ »°³Ñ·Á¤ÎÆâ³Ñ¤Ê¤Î¤Ç $\alpha,\ \gamma$¤¬¤È¤â¤Ë $\alpha,\ \gamma\ge\dfrac{\pi}{2}$ ¤È¤Ê¤ë¤³¤È¤Ïµ¯¤³¤é¤Ê¤¤¡¥ $\alpha\ge\dfrac{\pi}{2}$ ¤Þ¤¿¤Ï $\gamma\ge\dfrac{\pi}{2}$ ¤Ê¤é $\pi>\gamma+\alpha\ge\dfrac{\pi}{2}$¤È¤Ê¤ê $\cos(\gamma+\alpha)\cos\gamma \cos\alpha\ge 0$¡¥ ¤æ¤¨¤Ë $\cos(\gamma+\alpha)\cos\gamma \cos\alpha<0$¤È¤Ê¤ë¤Î¤Ï

\begin{displaymath}0<\alpha,\ \gamma<\dfrac{\pi}{2},\ \dfrac{\pi}{2}<\gamma+\alpha<\pi
\end{displaymath}

$\beta=\pi-(\gamma+\alpha)$ ¤Ê¤Î¤Ç¡¤3¤Ä¤Îĺ³Ñ¤Ï¤¤¤º¤ì¤â±Ô³Ñ¤Ç¤¢¤ë¡¥
(2) (1)¤«¤é $\bigtriangle¾å {\rm ABC}$ ¤¬±Ô³Ñ»°³Ñ·Á¤Î¤È¤­¤Ë¼¨¤»¤Ð ½½Ê¬¤Ç¤¢¤ë¡¥ Í¿ÉÔÅù¼°¤ò¼¨¤¹¤¿¤á¤Ë¤Ï¡¤ $-1 \le 8\cos(\gamma+\alpha)\cos\gamma \cos\alpha$ ¤¬À®¤êΩ¤Ä¤³¤È¤ò¼¨¤»¤Ð¤è¤¤¡¥ $\gamma$ ¤ò¸ÇÄꤷ¤Æ

\begin{displaymath}f(\alpha)=8\cos(\gamma+\alpha)\cos\gamma \cos\alpha
\end{displaymath}

¤ÈÃÖ¤¯¡¥¤³¤Î¤È¤­

\begin{displaymath}f'(\alpha)=-8\sin(\gamma+\alpha)\cos\gamma \cos\alpha
-8\co...
...ha)\cos\gamma \sin\alpha
=-8\cos\gamma\sin(2\alpha+\gamma)
\end{displaymath}

$\bigtriangle¾å {\rm ABC}$ ¤¬±Ô³Ñ»°³Ñ·Á¤Ê¤Î¤Ç $\cos\gamma>0$ ¤Ç¤¢¤ë¡¥ $0<2\alpha+\gamma<2\pi$¤Ê¤Î¤Ç $2\alpha+\gamma=\pi$¤Î¤È¤­$f(\alpha)$ ¤Ï¶Ë¾®¤«¤ÄºÇ¾®¤Ë¤Ê¤ë¡¥ $\alpha=\dfrac{\pi-\gamma}{2}$ ¤è¤ê

\begin{eqnarray*}f \left(\dfrac{\pi-\gamma}{2}\right)
&=&8\cos\left(\dfrac{\pi...
...gamma\\
&=&4 \left(\cos\gamma-\dfrac{1}{2} \right)^2-1\ge-1
\end{eqnarray*}

Åù¹æÀ®Î©¤Ï $\cos\gamma=\dfrac{1}{2}$¤Ä¤Þ¤ê $\gamma=\dfrac{\pi}{3}$ ¡¥ ¤³¤Î¤È¤­ $\alpha=\beta=\dfrac{\pi}{3}$ ¡¥¤è¤Ã¤ÆÅù¹æ¤¬À®Î©¤¹¤ë¤Î¤Ï $\bigtriangle¾å {\rm ABC}$ ¤¬Àµ»°³Ñ·Á¤Î¤È¤­¡¥

Ãí°Õ¡¡ËÜÌ¿Âê¤Ï»ÍÌÌÂΤξì¹ç¤Ë¤â¼¡¤Î·Á¤ÇÀ®¤êΩ¤Ä¡¥

Ⱦ·Â1¤ÎµåÌ̾å¤ËÁê°Û¤Ê¤ë4ÅÀ A¡¤B¡¤C¡¤D ¤¬¤¢¤ë¡¥ \[ \mathrm{AB}^2+\mathrm{AC}^2+\mathrm{AD}^2+\mathrm{BC}^2+\mathrm{BD}^2+\mathrm{CD}^2\leqq 16 ¡¡¡Ä­£ \] ¤¬À®Î©¤¹¤ë¡¥

¾ÚÌÀ¡¡ µ­¹æ¤ÏƱÍͤȤ¹¤ë¡¥ \begin{eqnarray*} &&\mathrm{AB}^2+\mathrm{AC}^2+\mathrm{AD}^2+\mathrm{BC}^2+\mathrm{BD}^2+\mathrm{CD}^2\\ &=&3\left(|\overrightarrow{a}|^2+|\overrightarrow{b}|^2+|\overrightarrow{c}|^2+|\overrightarrow{d}|^2 \right) -2( \overrightarrow{a}\cdot\overrightarrow{b}+ \overrightarrow{a}\cdot\overrightarrow{c}+ \overrightarrow{a}\cdot\overrightarrow{d}+ \overrightarrow{b}\cdot\overrightarrow{c}+ \overrightarrow{b}\cdot\overrightarrow{d}+ \overrightarrow{c}\cdot\overrightarrow{d})\\ &=&12-\left(\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d}\right|^2-4 \right)\\ &=&16-\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d}\right|^2 \end{eqnarray*} ¤³¤ì¤è¤ê¡¤ $ ­£ $ ¤¬À®Î©¤·¡¤Åù¹æÀ®Î©¤Ï¡¤ \[ \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d}=\overrightarrow{0} \] ¤Î¤È¤­¡¥ »ÍÌÌÂΤˤª¤¤¤Æ¡¤½Å¿´¤È³°¿´¤¬°ìÃפ¹¤ë¤Î¤Ï¡¤ÅùÌÌ»ÍÌÌÂΤΤȤ­¤Ç¤¢¤ë¡¥ ¡Ø¿ô³ØÂÐÏá١ݡÖÆÃÊ̤ʻÍÌÌÂΡסݡÖÅùÌÌ»ÍÌÌÂΡ×
http://aozoragakuen.sakura.ne.jp/taiwa/taiwaNch03/simentai/node8.html
¤ò»²¹Í¤Î¤³¤È¡¥


AozoraGakuen
2002-03-01